- 1. A geyser heats water flowing at the rate of 3.0 liters per minute from 27 °C to 77 °C. If the geyser operates on a gas burner, what is the rate of consumption of the fuel if its heat of combustion is 4.0×10^4 J/g?
- **Sol.** Rate of flow of water is = 3.0 liter/min.

Initial temperature of water is $= T_1 = 27$ °C

Final temperature of water is = T_2 = 77°C

: increase in temperature of water is given by = $\Delta T = T_2 - T_1 = 77 - 27 = 50$ °C

Specific heat for water = c = 4.2 J g⁻¹ °C⁻¹

Mass of water = m = 3.0 liter/min = 3000 g/min}

By using

$$\Delta Q = mc\Delta T$$

$$= 3000 \times 4.2 \times 50$$

=
$$6.3 \times 10^5 J/\mathrm{min}$$

Heat of combustion of water = $4 \times 10^4 \text{J/g}$

... Rate of consumption is given by $=\frac{6.3\times10^5}{4\times10^4}$ = 15.75 g/min